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1.2 Vector bundles and connections

Definition 1.2.1. Let X and Y be complex manifolds. A continuous map
f: X — Y is a holomorphic map if for any holomorphic charts (U, ¢) and
(U, ) of X and Y, respectively, the map @'o fop : o(f~H(U)NU) — ' (U’)
is holomorphic.

Definition 1.2.2. Let M be a complex manifold and F be a complex vector
bundle over M. We say that F is a holomorphic vector bundle if for any
i,j such that U; N U; # 0, ¢;; in (1.1.3) is a holomorphic map.

Remark that the complex vector bundle could be defined over any man-
ifolds, but the holomorphic vector bundle is only well-defined over complex
manifolds.

It is easy to see that the total space of a holomorphic vector bundle is a
complex manifold.

Proposition 1.2.3. The complex vector bundle TV M over M is holomor-

phic.

Proof. The proposition follows the fact that the transition map for T M1

is the same as that of complex manifold M. O
Since T M is locally spanned by {32, -+ , 52}, we will also regard it

as the complex tangent bundle of M.

Example 1.2.4. Any canonical construction in linear algebra gives rise to
a geometric version for complex (resp. holomorphic) vector bundles. Let E
and F' be complex (resp. holomorphic) vector bundles over M.

e The direct sum EF® F' is the complex (resp. holomorphic) vector bundle
over M such that the fibre (E & F)|, for any z € M is canonically
isomorphic to E|, @ F|, as complex vector spaces.

e The tensor product F ® F' is the complex (resp. holomorphic) vector
bundle over M such that the fibre (EQF)|, for any x € M is canonically
isomorphic to E|, ® F|, as complex vector spaces.

e The i-th exterior power A‘E and the i-th symmetric power S'E are
the complex (resp. holomorphic) vector bundle over M such that the
fibres for any € M are canonically isomorphic to A*(E|,) and S*(E|,)
respectively.

e The dual bundle E* is the complex (resp. holomorphic) vector bundle
over M such that the fibre £*|, for any = € M is canonically isomorphic
to (El.)*.



10 CHAPTER 1. KAHLER MANIFOLDS

e The endomorphism bundle End(E) is the complex (resp. holomorphic)
vector bundle over M such that the fibre End(FE)|, for any x € M is
canonically isomorphic to End(E|,).

Proposition 1.2.5. The set 7, C CP" x C"*! that consists of all pairs
(¢,2) € CP" x C"™ with z € £ forms in a natural way a holomorphic line
bundle over CIP". It is called the tautological line bundle over CP".

Proof. The projection 7 : v, — CP" is given by projecting to the first
factor. Let CP" = |J_,U; be the standard open covering in (1.1.26). Let

0 =1z:+:2z,). A canonical trivialization of -, over Uj; is given by
'lbz' : 7T71(UZ') — Uz X C, <£7 Z) — (5721'). (12].)
Then the transition maps ¢ — z;/z; is holomorphic. O

Let E be a complex vector bundle over a smooth manifold M. A linear
map

VP €®(M,E) = €~ (M, T"M @ E) (1.2.2)

is called a connection on E if for any ¢ € €°(M,C), s € €°(M, FE) and
vector field V', we have

VE(ps) = V(p)s + oVis. (1.2.3)

Connections on E always exist. Indeed, let {Uy}re; be an open covering
of M such that E|y, is trivial for any & € I. If {&}=1,..., is a local
frame of El|y,, any section s € (U, E) has the form s = >,_, siu
with uniquely determined s; € €>°(Uy). We define a connection on E|y, by
VEs .= Y ds; ® &. Consider now a partition of unity {¢y}res subor-
dinated to {Ug}res. Then VFs := 3", VE(¢ys), s € €°(M, E), defines a
connection on F.

If'V¥ is another connection on E, then by (1.2.3),'VF-VE € QY(M, End(E)).

If V¥ is a connection on F, then there exists a unique extension V¥ :
QO (M, E) — Q*FY(M, E) verifying the Leibniz rule: for any a € Q%(M,C),
s € (M, E), then

VE(ans)=da s+ (—1)fanVFs. (1.2.4)

Proposition 1.2.6. Let (VF)? := VE o V¥ : (M, E) — Q*(M, E). For
s € € (M, E) and vector fields U, V on M, we have

(VE) (U, V)s = VEVEs - VEVEs — VE 5. (1.2.5)
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Proof. Let {e;} be a locally orthonormal frame of M and {e'} be its dual
with respect to the metric. Then from (1.2.4),

(VE)QS =Vt (ej ®V6Ejs> = de’ ®ijs +e Ael ®V£V6Ejs. (1.2.6)

Since
de? (U, V) = U( (V) = V(e/(U)) — €/ ([U, V])
and
ei A ej(U7 V) - g(U7 ei)ga/a ej) - g(U> ej)g(v7 ei)v (127)
we have

(VEY (U, V)s = U(g(V.e))VE s + g(V,e;) VEVE s
- Vi(g(U, ej))ijs —g(U, ej)V‘}fvgs — V{;U’V]s
= V{Vis—ViVis— Vs (1.2.8)

The proof of this proposition is completed. O
Let R¥ be the curvature of V¥. Then from Proposition 1.2.6, we have
(VE)? = RF € Q*(M,End(E)). (1.2.9)

From the Leibniz’s rule, the operator (V)2 and R¥ could be extended to
act on Q*(M, E). Moreover, they are also equal after the extension.

Proposition 1.2.7 (Bianchi Identity). The following identity holds,

[VE, RF] = 0. (1.2.10)

Proof. Since RF = (V¥)?,
[V RF] = [VE (VE)Y] =0. (1.2.11)
O

Let h¥ be a Hermitian metric on E, i.e., a smooth family {hf},cy
of sesquilinear maps h¥ : E, x E, — C such that hZ(£,€) > 0 for any
¢ € E,\{0}. We call (E,h*) a Hermitian vector bundle on M. There always
exist Hermitian metrics on E by using the partition of unity as above.
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Example 1.2.8. By (1.1.21), for any Z, 2’ € T8O M,
WMz 7 = g(2, 7)) (1.2.12)

defines a Hermitian metric on THO M. Let h;; = hT"M (5%, 7%). Then by
(1.1.20),

Definition 1.2.9. A connection V¥ is said to be a Hermitian connection
on (E, k%) if for any s;,s0 € €°(M, E),

dhE(Sl, 82) == hE(VEsl, 82) + hE(Sl, VESQ). (1214)

There always exist Hermitian connections. Indeed, let V& be a connection
on E, then hf(V¥sy,s9) = dhF(sy,s2) — h¥(s1, V{sy) defines a connection
V{ on E. Then V¥ = Z(V{ + V¥) is a Hermitian connection on (E, h¥).

In the rest of this section, we assume that F is a holomorphic vector
bundle over a complex manifold M.

Let

QPI(M, E) := €= (M, \P(T*HM) @ ATV M) @ E). (1.2.15)

Any section s € €>°(M, E) has the local form s = ). ¢;§;, where {¢;} is
a holomorphic frame of E and ¢; are smooth functions. We set

3's=> (B¢, (1.2.16)
I
where 0p; = 3 i dz %gpi in holomorphic coordinates (z1,- - , 2,). Then the
operator
9" 1 €=(M,E) — Q" (M, E) (1.2.17)

in (1.2.16) is well-defined. Indeed, if {¢}} is another holomorphic basis and
(1) is the holomorphic transition matrix, i.e., & = > ;& then s =
222 pitij)€; and in this coordinates,

3 (Z goiwij) =30 (Z gpwij) ¢

=300 g = 9"s. (1.2.18)
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Definition 1.2.10. A connection V¥ on F is said to be a holomorphic
connection if VEs = iV(EEs) for any V € TOVM and s € €°(M, E).

Let {&}i=1.. » be alocal frame of E. Denote by h = (hy, = h¥(&;,&)) the

matrix of h¥ with respect to {§}i=1... . Let s1 = >, 01le, s2 = D, b
Let @; = (i1, -+, pir) for i =0,1. Then

hP(s1,8) =@ h-f = (h- ¢}, 73"). (1.2.19)

The connection form I' = (I'}) of V¥ with respect to {&}i=1...  is defined
by, with local 1-forms T,

VP& = T8 (1.2.20)
For s = Y, vx&, denote by I' = (T (:=T'})):
Ts= (&, &) T ol (1.2.21)

Recall that R¥ = dI' + ' AT. If V¥ is holomorphic, by Definition 1.2.10,
['(V) = 0 for any TV M.

Theorem 1.2.11. There exists a unique holomorphic Hermitian connection
VE on (E,hF), called the Chern connection. With respect to a local holo-
morphic frame, the connection matriz is given by

[ =h"'oh. (1.2.22)

Proof. From Definition 1.2.10, we only need to define V¥ for U € T M.
Relation (1.2.14) implies for V € TOOM | 51,50 € €(M, E),

V(hE(Sl, 82)) = hE(V‘E;sl, SQ) + hE(Sl, V%Sg). (1223)

Since V%s = 2'7(5}33), the above equation defines V¥ uniquely. Moreover, if
{&}i=1,. » is a local holomorphic frame of E, by (1.2.19) and (1.2.21),

(Oh - 1, 2") = (T - 1, 32"). (1.2.24)
Thus we get (1.2.22). O

Since E' is holomorphic, similar to (1.2.4), by Leibniz’s rule, the operator
9" extends naturally to 0 : Q**(M, E) — Q~**1(M, E) and (3" )? = 0.

Let VE be the Chern connection on (E,h¥). Then we have a decompo-
sition

VE = (VE)H 4 (vE)! (1.2.25)



14 CHAPTER 1. KAHLER MANIFOLDS

such that

E

(VE)l,O . Q*’*(M, E) N Q*—H’*(M, E), (VE)O,l — 5 ) (1.2.26)

From (1.2.23), 51, 5, € (M, E),
(1 ) = 08 (951, ) 10 (590,
- (ah%l, 59) — BE (51,5E52)) + OhE (SI,EESQ)
_RE (81, (EE)232> —0. (1.2.27)

So ((VE)I’O)2 =0 and

=E

(VE)2 = 9" o (VEYLO 4 (VE)L0 6 5", (1.2.28)
Then the curvature
RE € QM(M,End(E)). (1.2.29)

If rank(E) = 1, End(E) is trivial. Since R is skew-adjoint, it is canonically
identified as a (1,1)-form on M, such that v/—1RF is real.

Example 1.2.12 (Tautological line bundle on CP"). Recall that in Propo-
sition 1.2.5, the point on 7, is (¢,z) € CP" x C"*!. Tt is natural to define
a Hermitian metric h on 7, by h(f,z) = |z|*. Now we study it in local
coordinates. By (1.2.1), if h; is the metric of h on U;, then we have

So in the coordinates (U;, 0), for £ = [z, , 2],
n) = 2L Z 1402 (1.2.31)
|2

(1

By Theorem 1.2.11, the connection form of the Chern connection is

Oh; 0,.do*
I=h'=—2do* = . 1.2.32
© 00 14102 ( )
The curvature
1+ 0126, — 6,0 _
R = ar = — A 1000w =0y i (1.2.33)

(14162)2
By (1.1.32),
wps = —V—1R™. (1.2.34)
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Let V be the Levi-Civita connection on (7'M, g), which could be naturally
extended complex linearly on TX ® C.

Theorem 1.2.13. Let M be a almost complex manifold with triple (g, J,w).
Then the following statements are equivalent.

(1) (M,w) is Kdhler.

(2) the bundles TYOM and TV M are preserved by V.

(3) VJ =0.
Proof. (2)<(3) is obvious.

(3) = (1): From (1.1.23),

N (U, V) =VyV —VyU + JV 5V — JVyJU
+ JVyJV — IV 3yU =V JV 4+ V5, JU
= J(Vy )V = J(Vy U — (Vi )V + (Vi J)U  (1.2.35)

for vector fields U, V. So V.J = 0 implies N7 = 0. Since w(-,-) = g(J-,-), we
have

(Vow)(V, W) =U(w(V,W)) —w(VyV, W) —w(V, Vg V)
=U(g(JV,W)) = g(VuJV,W) = g(JV,VyW) =0 (1.2.36)

for any vector fields U, V, W.
For any a € QF(M) and vector fields X, - - - , Xi, we could obtain that

do(Xo, -+, X)) = Y (1) (Vx,a)(Xo, -+, Xiy -, Xp). (1.2.37)

i=0
From (1.2.36) and (1.2.37), we have dw = 0.
(1) = (3): Since w(-,-) = g(J-,+), for vector fields U, V, W, we have

dw(U, V,W) = U(w(V,W)) + V(w(W,U)) + W(w(U,V))
—w([U, V], W) +w([U W], V) —w([V,W],U)
=U(g(JV,W)) +V(g(JW,U)) + W(g(JU,V)) — g(J(VuV — VyU), W)
+9(J(VuW = VwU),V) = g(J(VyW = V' V),U)
= g(Vu )V, W) — g(Vy YU, W) + g((Viw U, V). (1.2.38)

Since g(JU, V) + g(U,JV) =0 and (Vw J)J = —J(VwJ), by (1.2.35) and
(1.2.38), we have

dw(JU, V,W) + dw(U, JV,W) = g(V ju )V, W) — g((Vy J)JU, W)
+9(Vw ) JU, V) + g(VuJ)JV.W) = g(Vov YU, W) + g(Vw J)U, JV)
= 29((Vw U, JV) — g(N7(U, V), W). (1.2.39)
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So dw =0 and N/ = 0 imply V.J = 0.

Our theorem is completed. O

Proposition 1.2.14. Let M be a complex manifold. Let V7'M be the
Chern connection on TOOM.  For any v € €°(M, TOVM), we define

VIOIMy = YTOOMG  Got Vo= VIUOM g yTOVM - Thep (M,w) is a
Kdhler manifold if and only if V = 6, which means that the restriction of
the Levi-Civita connection on T M s just the Chern connection.

Proof. By defintion, the bundles T M and TV M are preserved by V. If
V =V, from Theorem 1.2.13, we know that (M, w) is a Kéhler.

If (M,w) is a Kihler, by Theorem 1.2.13, the bundles 7% M and TV M
are preserved by V. Since Vv = V7, we only need to prove that the restric-
tion of V on TUYM is holomorphic and Hermitian. Since V is metric-
preserving, we only need to prove that V is holomorphic on 79 M.

Let V be a holomorphic vector field, U € €>(M, TV M). Then [U, V] €
€>°(M, TV M). In fact, for any holomorphic function f, V(f) is holomor-
phic. Since U(f) =0 and U(V(f)) = 0, we have [U,V]f = 0.

Since U € (M, TV M), it has a decomposition U = X + /—1JX.
So

JIX +V-1JX, V] = —V/—1[X + V-1JX,V]. (1.2.40)
It is equivalent to
(J+vV-1)([X,V]+ J[JX,V]) = 0. (1.2.41)
Thus [X, V] + J[JX,V] € TOYM. On the other hand,

VoV = VxV + Vo1V,xV = ViV + IV V
= [X,V]+ JJX, V] = J(Vy )X = [X, V] + J[JX,V]. (1.2.42)

Since V preserves T M| we have [X, V] + J[JX,V] € THOM. So
VoV =X, V]+ J[JX,V]=0. (1.2.43)
The proof of our proposition is completed. O

Theorem 1.2.15 (Normal coordinates). A complex manifold M with triple
(g, J,w) is Kdhler if and only if around each point of M, there exist holo-
morphic coordinates in which g;;(z) = 0;; + O(|z]?).
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Proof. If g;5(z) = 0;5 + O(]z]*), by (1.1.22),

0. 9.~ , .
dw = /1 [ D gek + D5 4yk ) A dzi A d5 = . (1.2.44)
Oz, Oy
Conversely, let (2!, - -+, 2") be a holomorphic frame such that g;;(0) = 0;;.

o k ok 2\ Q; e S
Then g;; = 05 + aijr2" + a;;52" +O(|2]?). Since g;; = g;;, we have a;;z = G-
Since

dw = vV=1(aypdz" + ayzdz") N dz* N dZ + O(|z]?), (1.2.45)
The Kéhler condition implies that a;rdz* A d2' A dz7 = 0. It means that
QAijk = Qkji-
We choose a local frame frame (6',--- 6") by

. ) 1 .
=0 - §akijeﬂe’f. (1.2.46)

We claim that this frame is holomorphic. In fact, set z = f(#). Then f is
holomorphic. Observe that
_O(f'of) Of'0f Of'Ofi _Of'Ofk

0 _ 9 9% OF7 O 9T OJk
20, o 00, | 0z 09, 0z 06,

(1.2.47)

Since (9 f;/06;) is non-degenerate, we see that f~! is holomorphic!.
For this coordinate change,
dz' = df' — ay;07do". (1.2.48)
So in this new coordinates,
w=V—=1(0;j + ayz" + a;;z2" + O(|2*))dz" A dZ
=V _1(523 -+ aijkﬁk —+ aiﬂgék + O(]9]2))(d«91 - aqﬂﬁldﬁq) A (dH_J - apjsésdH_P)
=V —1(8;; + O(|60]*))d0" A dE’. (1.2.49)

From (1.1.22), we have g;3(0) = d6;; + O(|0]?) O

In general, the normal coordinates in Riemannian geometry is different
from that in Kahler geometry.

!This argument and the inverse function theorem for real function gives a proof of
the following inverse function theorem for holomorphic function: Let f : U — V
be a holomorphic map between two open subsets U,V C C". If z € U is regular, i.e.,
the complex Jacobian J(f)(z) = (0fi/0z;) is surjective, then there exist open subsets
z€U' CU and f(z) € V! CV such that f induces a biholomorphic map f: U' — V'.



