1.2 Vector bundles and connections

Definition 1.2.1. Let X and Y be complex manifolds. A continuous map $f: X \to Y$ is a **holomorphic** map if for any holomorphic charts (U, φ) and (U', φ') of X and Y, respectively, the map $\varphi' \circ f \circ \varphi : \varphi(f^{-1}(U') \cap U) \to \varphi'(U')$ is holomorphic.

Definition 1.2.2. Let M be a complex manifold and E be a complex vector bundle over M. We say that E is a **holomorphic** vector bundle if for any i, j such that $U_i \cap U_j \neq \emptyset$, ψ_{ij} in (1.1.3) is a holomorphic map.

Remark that the complex vector bundle could be defined over any manifolds, but the holomorphic vector bundle is only well-defined over complex manifolds.

It is easy to see that the total space of a holomorphic vector bundle is a complex manifold.

Proposition 1.2.3. The complex vector bundle $T^{(1,0)}M$ over M is holomorphic.

Proof. The proposition follows the fact that the transition map for $T^{(1,0)}M$ is the same as that of complex manifold M.

Since $T^{(1,0)}M$ is locally spanned by $\{\frac{\partial}{\partial z^1}, \cdots, \frac{\partial}{\partial z^n}\}$, we will also regard it as the complex tangent bundle of M.

Example 1.2.4. Any canonical construction in linear algebra gives rise to a geometric version for complex (resp. holomorphic) vector bundles. Let E and F be complex (resp. holomorphic) vector bundles over M.

- The direct sum $E \oplus F$ is the complex (resp. holomorphic) vector bundle over M such that the fibre $(E \oplus F)|_x$ for any $x \in M$ is canonically isomorphic to $E|_x \oplus F|_x$ as complex vector spaces.
- The tensor product $E \otimes F$ is the complex (resp. holomorphic) vector bundle over M such that the fibre $(E \otimes F)|_x$ for any $x \in M$ is canonically isomorphic to $E|_x \otimes F|_x$ as complex vector spaces.
- The *i*-th exterior power $\Lambda^i E$ and the *i*-th symmetric power $S^i E$ are the complex (resp. holomorphic) vector bundle over M such that the fibres for any $x \in M$ are canonically isomorphic to $\Lambda^i(E|_x)$ and $S^i(E|_x)$ respectively.
- The dual bundle E^* is the complex (resp. holomorphic) vector bundle over M such that the fibre $E^*|_x$ for any $x \in M$ is canonically isomorphic to $(E|_x)^*$.

• The endomorphism bundle $\operatorname{End}(E)$ is the complex (resp. holomorphic) vector bundle over M such that the fibre $\operatorname{End}(E)|_x$ for any $x \in M$ is canonically isomorphic to $\operatorname{End}(E|_x)$.

Proposition 1.2.5. The set $\gamma_n \subset \mathbb{CP}^n \times \mathbb{C}^{n+1}$ that consists of all pairs $(\ell, z) \in \mathbb{CP}^n \times \mathbb{C}^{n+1}$ with $z \in \ell$ forms in a natural way a holomorphic line bundle over \mathbb{CP}^n . It is called the **tautological line bundle** over \mathbb{CP}^n .

Proof. The projection $\pi: \gamma_n \to \mathbb{CP}^n$ is given by projecting to the first factor. Let $\mathbb{CP}^n = \bigcup_{i=0}^n U_i$ be the standard open covering in (1.1.26). Let $\ell = [z_0 : \cdots : z_n]$. A canonical trivialization of γ_n over U_i is given by

$$\psi_i : \pi^{-1}(U_i) \to U_i \times \mathbb{C}, \quad (\ell, z) \mapsto (\ell, z_i).$$
 (1.2.1)

Then the transition maps $\ell \mapsto z_i/z_j$ is holomorphic.

Let E be a complex vector bundle over a smooth manifold M. A linear map

$$\nabla^E : \mathscr{C}^{\infty}(M, E) \to \mathscr{C}^{\infty}(M, T^*M \otimes E)$$
 (1.2.2)

is called a **connection** on E if for any $\varphi \in \mathscr{C}^{\infty}(M,\mathbb{C})$, $s \in \mathscr{C}^{\infty}(M,E)$ and vector field V, we have

$$\nabla_V^E(\varphi s) = V(\varphi)s + \varphi \nabla_V^E s. \tag{1.2.3}$$

Connections on E always exist. Indeed, let $\{U_k\}_{k\in I}$ be an open covering of M such that $E|_{U_k}$ is trivial for any $k\in I$. If $\{\xi_{kl}\}_{l=1,\cdots,r}$ is a local frame of $E|_{U_k}$, any section $s\in \mathscr{C}^\infty(U_k,E)$ has the form $s=\sum_{l=1}^r s_l\xi_{kl}$ with uniquely determined $s_l\in \mathscr{C}^\infty(U_k)$. We define a connection on $E|_{U_k}$ by $\nabla_k^E s:=\sum_{l=1}^r ds_l\otimes \xi_{kl}$. Consider now a partition of unity $\{\psi_k\}_{k\in I}$ subordinated to $\{U_k\}_{k\in I}$. Then $\nabla^E s:=\sum_k \nabla_k^E(\psi_k s), s\in \mathscr{C}^\infty(M,E)$, defines a connection on E.

If ∇^E is another connection on E, then by (1.2.3), $\nabla^E - \nabla^E \in \Omega^1(M, \operatorname{End}(E))$.

If ∇^E is a connection on E, then there exists a unique extension ∇^E : $\Omega^*(M,E) \to \Omega^{*+1}(M,E)$ verifying the Leibniz rule: for any $\alpha \in \Omega^k(M,\mathbb{C})$, $s \in \Omega^*(M,E)$, then

$$\nabla^{E}(\alpha \wedge s) = d\alpha \wedge s + (-1)^{k} \alpha \wedge \nabla^{E} s. \tag{1.2.4}$$

Proposition 1.2.6. Let $(\nabla^E)^2 := \nabla^E \circ \nabla^E : \mathscr{C}^{\infty}(M, E) \to \Omega^2(M, E)$. For $s \in \mathscr{C}^{\infty}(M, E)$ and vector fields U, V on M, we have

$$\left(\nabla^{E}\right)^{2}(U,V)s = \nabla_{U}^{E}\nabla_{V}^{E}s - \nabla_{V}^{E}\nabla_{U}^{E}s - \nabla_{[U,V]}^{E}s. \tag{1.2.5}$$

П

Proof. Let $\{e_i\}$ be a locally orthonormal frame of M and $\{e^i\}$ be its dual with respect to the metric. Then from (1.2.4),

$$\left(\nabla^{E}\right)^{2} s = \nabla^{E} \left(e^{j} \otimes \nabla^{E}_{e_{j}} s\right) = de^{j} \otimes \nabla^{E}_{e_{j}} s + e^{i} \wedge e^{j} \otimes \nabla^{E}_{e_{i}} \nabla^{E}_{e_{j}} s. \tag{1.2.6}$$

Since

$$de^{j}(U,V) = U(e^{j}(V)) - V(e^{j}(U)) - e^{j}([U,V])$$

and

$$e^{i} \wedge e^{j}(U, V) = g(U, e_{i})g(V, e_{i}) - g(U, e_{i})g(V, e_{i}),$$
 (1.2.7)

we have

$$(\nabla^E)^2 (U, V) s = U(g(V, e_j)) \nabla^E_{e_j} s + g(V, e_j) \nabla^E_U \nabla^E_{e_j} s$$

$$- V(g(U, e_j)) \nabla^E_{e_j} s - g(U, e_j) \nabla^E_V \nabla^E_{e_j} s - \nabla^E_{[U,V]} s$$

$$= \nabla^E_U \nabla^E_V s - \nabla^E_V \nabla^E_U s - \nabla^E_{[U,V]} s. \quad (1.2.8)$$

The proof of this proposition is completed.

Let R^E be the curvature of ∇^E . Then from Proposition 1.2.6, we have

$$(\nabla^E)^2 = R^E \in \Omega^2(M, \text{End}(E)). \tag{1.2.9}$$

From the Leibniz's rule, the operator $(\nabla^E)^2$ and R^E could be extended to act on $\Omega^*(M, E)$. Moreover, they are also equal after the extension.

Proposition 1.2.7 (Bianchi Identity). The following identity holds,

$$[\nabla^E, R^E] = 0. (1.2.10)$$

Proof. Since $R^E = (\nabla^E)^2$.

$$[\nabla^E, R^E] = [\nabla^E, (\nabla^E)^2] = 0.$$
 (1.2.11)

Let h^E be a **Hermitian metric** on E, i.e., a smooth family $\{h_x^E\}_{x\in M}$ of sesquilinear maps $h_x^E: E_x\times E_x\to \mathbb{C}$ such that $h_x^E(\xi,\xi)>0$ for any $\xi\in E_x\backslash\{0\}$. We call (E,h^E) a Hermitian vector bundle on M. There always exist Hermitian metrics on E by using the partition of unity as above.

Example 1.2.8. By (1.1.21), for any $Z, Z' \in T^{(1,0)}M$,

$$h^{T^{(1,0)}M}(Z,Z') := g(Z,\overline{Z'})$$
 (1.2.12)

defines a Hermitian metric on $T^{(1,0)}M$. Let $h_{ij} = h^{T^{(1,0)}M} \left(\frac{\partial}{\partial z^i}, \frac{\partial}{\partial z^j}\right)$. Then by (1.1.20),

$$h_{ij} = g_{i\bar{j}}. (1.2.13)$$

Definition 1.2.9. A connection ∇^E is said to be a **Hermitian connection** on (E, h^E) if for any $s_1, s_2 \in \mathscr{C}^{\infty}(M, E)$,

$$dh^{E}(s_{1}, s_{2}) = h^{E}(\nabla^{E} s_{1}, s_{2}) + h^{E}(s_{1}, \nabla^{E} s_{2}).$$
(1.2.14)

There always exist Hermitian connections. Indeed, let ∇_0^E be a connection on E, then $h^E(\nabla_1^E s_1, s_2) = dh^E(s_1, s_2) - h^E(s_1, \nabla_0^E s_2)$ defines a connection ∇_1^E on E. Then $\nabla^E = \frac{1}{2}(\nabla_0^E + \nabla_1^E)$ is a Hermitian connection on (E, h^E) .

In the rest of this section, we assume that E is a holomorphic vector bundle over a complex manifold M.

Let

$$\Omega^{p,q}(M,E) := \mathscr{C}^{\infty}(M,\Lambda^p(T^{*(1,0)}M) \otimes \Lambda^q(T^{*(0,1)}M) \otimes E). \tag{1.2.15}$$

Any section $s \in \mathscr{C}^{\infty}(M, E)$ has the local form $s = \sum_{i} \varphi_{i} \xi_{i}$, where $\{\xi_{i}\}$ is a holomorphic frame of E and φ_{l} are smooth functions. We set

$$\overline{\partial}^{E} s = \sum_{i} (\overline{\partial} \varphi_{i}) \xi_{i}, \qquad (1.2.16)$$

where $\overline{\partial}\varphi_i = \sum_j d\bar{z}^j \frac{\partial}{\partial \bar{z}_j} \varphi_i$ in holomorphic coordinates (z_1, \dots, z_n) . Then the operator

$$\overline{\partial}^E : \mathscr{C}^{\infty}(M, E) \to \Omega^{0,1}(M, E) \tag{1.2.17}$$

in (1.2.16) is well-defined. Indeed, if $\{\xi'_j\}$ is another holomorphic basis and (ψ_{ij}) is the holomorphic transition matrix, i.e., $\xi_i = \sum_j \psi_{ij} \xi'_j$, then $s = \sum_j (\sum_i \varphi_i \psi_{ij}) \xi'_j$ and in this coordinates,

$$\sum_{j} \overline{\partial} \left(\sum_{i} \varphi_{i} \psi_{ij} \right) \xi'_{j} = \sum_{j} \overline{\partial} \left(\sum_{i} \varphi_{i} \psi_{ij} \right) \xi'_{j} \\
= \sum_{i} \overline{\partial} \varphi_{i} \sum_{j} \psi_{ij} \xi'_{j} = \overline{\partial}^{E} s. \quad (1.2.18)$$

Definition 1.2.10. A connection ∇^E on E is said to be a **holomorphic** connection if $\nabla^E_V s = i_V(\overline{\partial}^E s)$ for any $V \in T^{(0,1)}M$ and $s \in \mathscr{C}^{\infty}(M, E)$.

Let $\{\xi_l\}_{l=1,\dots,r}$ be a local frame of E. Denote by $h=(h_{lk}=h^E(\xi_k,\xi_l))$ the matrix of h^E with respect to $\{\xi_l\}_{l=1,\dots,r}$. Let $s_1=\sum_k \varphi_{1k}\xi_k,\ s_2=\sum_l \varphi_{2l}\xi_l$. Let $\varphi_i=(\varphi_{i1},\dots,\varphi_{ir})$ for i=0,1. Then

$$h^{E}(s_{1}, s_{2}) = \overline{\varphi_{2}} \cdot h \cdot \varphi_{1}^{t} = \langle h \cdot \varphi_{1}^{t}, \overline{\varphi_{2}}^{t} \rangle. \tag{1.2.19}$$

The connection form $\Gamma = (\Gamma_k^l)$ of ∇^E with respect to $\{\xi_l\}_{l=1,\dots,r}$ is defined by, with local 1-forms Γ_k^l ,

$$\nabla^E \xi_k = \Gamma_k^l \xi_l. \tag{1.2.20}$$

For $s = \sum_{k} \varphi_k \xi_k$, denote by $\Gamma = (\Gamma_{lk} (:= \Gamma_k^l))$:

$$\Gamma s = (\xi_1, \dots, \xi_r) \cdot \Gamma \cdot \varphi_1^t. \tag{1.2.21}$$

Recall that $R^E = d\Gamma + \Gamma \wedge \Gamma$. If ∇^E is holomorphic, by Definition 1.2.10, $\Gamma(V) = 0$ for any $T^{(0,1)}M$.

Theorem 1.2.11. There exists a unique holomorphic Hermitian connection ∇^E on (E, h^E) , called the **Chern connection**. With respect to a local holomorphic frame, the connection matrix is given by

$$\Gamma = h^{-1}\partial h. \tag{1.2.22}$$

Proof. From Definition 1.2.10, we only need to define ∇_U^E for $U \in T^{(1,0)}M$. Relation (1.2.14) implies for $V \in T^{(1,0)}M$, $s_1, s_2 \in \mathscr{C}^{\infty}(M, E)$,

$$V(h^{E}(s_{1}, s_{2})) = h^{E}(\nabla_{V}^{E} s_{1}, s_{2}) + h^{E}(s_{1}, \nabla_{\overline{V}}^{E} s_{2}).$$
(1.2.23)

Since $\nabla_{\overline{V}}^{E}s = i_{\overline{V}}(\overline{\partial}^{E}s)$, the above equation defines ∇_{V}^{E} uniquely. Moreover, if $\{\xi_{l}\}_{l=1,\dots,r}$ is a local holomorphic frame of E, by (1.2.19) and (1.2.21),

$$\langle \partial h \cdot \varphi_1^t, \overline{\varphi_2}^t \rangle = \langle h\Gamma \cdot \varphi_1^t, \overline{\varphi_2}^t \rangle.$$
 (1.2.24)

Thus we get (1.2.22).

Since E is holomorphic, similar to (1.2.4), by Leibniz's rule, the operator $\overline{\partial}^E$ extends naturally to $\overline{\partial}^E : \Omega^{*,*}(M, E) \to \Omega^{*,*+1}(M, E)$ and $(\overline{\partial}^E)^2 = 0$.

Let ∇^E be the Chern connection on (E, h^E) . Then we have a decomposition

$$\nabla^E = (\nabla^E)^{1,0} + (\nabla^E)^{0,1} \tag{1.2.25}$$

such that

$$(\nabla^E)^{1,0}: \Omega^{*,*}(M,E) \to \Omega^{*+1,*}(M,E), \quad (\nabla^E)^{0,1} = \overline{\partial}^E.$$
 (1.2.26)

From (1.2.23), $s_1, s_2 \in \mathscr{C}^{\infty}(M, E)$,

$$h^{E}\left(\left((\nabla^{E})^{1,0}\right)^{2} s_{1}, s_{2}\right) = \partial h^{E}\left((\nabla^{E})^{1,0} s_{1}, s_{2}\right) + h^{E}\left((\nabla^{E})^{1,0} s_{1}, \overline{\partial}^{E} s_{2}\right)$$

$$= \partial\left(\partial h^{E}(s_{1}, s_{2}) - h^{E}\left(s_{1}, \overline{\partial}^{E} s_{2}\right)\right) + \partial h^{E}\left(s_{1}, \overline{\partial}^{E} s_{2}\right)$$

$$- h^{E}\left(s_{1}, (\overline{\partial}^{E})^{2} s_{2}\right) = 0. \quad (1.2.27)$$

So $((\nabla^E)^{1,0})^2 = 0$ and

$$(\nabla^{E})^{2} = \overline{\partial}^{E} \circ (\nabla^{E})^{1,0} + (\nabla^{E})^{1,0} \circ \overline{\partial}^{E}. \tag{1.2.28}$$

Then the curvature

$$R^E \in \Omega^{1,1}(M, \operatorname{End}(E)). \tag{1.2.29}$$

If $\operatorname{rank}(E) = 1$, $\operatorname{End}(E)$ is trivial. Since R^E is skew-adjoint, it is canonically identified as a (1,1)-form on M, such that $\sqrt{-1}R^E$ is real.

Example 1.2.12 (Tautological line bundle on \mathbb{CP}^n). Recall that in Proposition 1.2.5, the point on γ_n is $(\ell, z) \in \mathbb{CP}^n \times \mathbb{C}^{n+1}$. It is natural to define a Hermitian metric h on γ_n by $h(\ell, z) = |z|^2$. Now we study it in local coordinates. By (1.2.1), if h_i is the metric of h on U_i , then we have

$$h(\ell, z) = h_i(\ell) z_i \bar{z}_i = h_i(\ell) |z_i|^2.$$
 (1.2.30)

So in the coordinates (U_i, θ) , for $\ell = [z_0, \dots, z_n]$,

$$h_i(\ell) = \frac{|z|^2}{|z_i|^2} = 1 + |\theta|^2.$$
 (1.2.31)

By Theorem 1.2.11, the connection form of the Chern connection is

$$\Gamma = h_i^{-1} \frac{\partial h_i}{\partial \theta_k} d\theta^k = \frac{\bar{\theta}_k d\theta^k}{1 + |\theta|^2}.$$
 (1.2.32)

The curvature

$$R^{\gamma_n} = d\Gamma = -\frac{(1+|\theta|^2)\delta_{kl} - \bar{\theta}_k \theta_l}{(1+|\theta|^2)^2} d\theta^k \wedge d\bar{\theta}^l. \tag{1.2.33}$$

By (1.1.32),

$$\omega_{FS} = -\sqrt{-1}R^{\gamma_n}.\tag{1.2.34}$$

Let ∇ be the Levi-Civita connection on (TM, g), which could be naturally extended complex linearly on $TX \otimes \mathbb{C}$.

Theorem 1.2.13. Let M be a almost complex manifold with triple (g, J, ω) . Then the following statements are equivalent.

- (1) (M, ω) is Kähler.
- (2) the bundles $T^{(1,0)}M$ and $T^{(0,1)}M$ are preserved by ∇ .
- (3) $\nabla J = 0$.

Proof. $(2) \Leftrightarrow (3)$ is obvious.

 $(3) \Longrightarrow (1)$: From (1.1.23),

$$N^{J}(U,V) = \nabla_{U}V - \nabla_{V}U + J\nabla_{JU}V - J\nabla_{V}JU + J\nabla_{U}JV - J\nabla_{JV}U - \nabla_{JU}JV + \nabla_{JV}JU = J(\nabla_{U}J)V - J(\nabla_{V}J)U - (\nabla_{JU}J)V + (\nabla_{JV}J)U$$
 (1.2.35)

for vector fields U, V. So $\nabla J = 0$ implies $N^J = 0$. Since $\omega(\cdot, \cdot) = g(J \cdot, \cdot)$, we have

$$(\nabla_U \omega)(V, W) = U(\omega(V, W)) - \omega(\nabla_U V, W) - \omega(V, \nabla_U W)$$

= $U(g(JV, W)) - g(\nabla_U JV, W) - g(JV, \nabla_U W) = 0$ (1.2.36)

for any vector fields U, V, W.

For any $\alpha \in \Omega^k(M)$ and vector fields X_0, \dots, X_k , we could obtain that

$$d\alpha(X_0, \dots, X_k) = \sum_{i=0}^k (-1)^i (\nabla_{X_i} \alpha)(X_0, \dots, \widehat{X_i}, \dots, X_k).$$
 (1.2.37)

From (1.2.36) and (1.2.37), we have $d\omega = 0$.

$$(1) \Longrightarrow (3)$$
: Since $\omega(\cdot, \cdot) = g(J\cdot, \cdot)$, for vector fields U, V, W , we have

$$\begin{split} d\omega(U,V,W) &= U(\omega(V,W)) + V(\omega(W,U)) + W(\omega(U,V)) \\ &- \omega([U,V],W) + \omega([U,W],V) - \omega([V,W],U) \\ &= U(g(JV,W)) + V(g(JW,U)) + W(g(JU,V)) - g(J(\nabla_U V - \nabla_V U),W) \\ &+ g(J(\nabla_U W - \nabla_W U),V) - g(J(\nabla_V W - \nabla_W V),U) \\ &= g((\nabla_U J)V,W) - g((\nabla_V J)U,W) + g((\nabla_W J)U,V). \end{split}$$
 (1.2.38)

Since g(JU, V) + g(U, JV) = 0 and $(\nabla_W J)J = -J(\nabla_W J)$, by (1.2.35) and (1.2.38), we have

$$d\omega(JU, V, W) + d\omega(U, JV, W) = g((\nabla_{JU}J)V, W) - g((\nabla_{V}J)JU, W) + g((\nabla_{W}J)JU, V) + g((\nabla_{U}J)JV, W) - g((\nabla_{JV}J)U, W) + g((\nabla_{W}J)U, JV) = 2g((\nabla_{W}J)U, JV) - g(N^{J}(U, V), W).$$
(1.2.39)

П

So $d\omega = 0$ and $N^J = 0$ imply $\nabla J = 0$. Our theorem is completed.

Proposition 1.2.14. Let M be a complex manifold. Let $\nabla^{T^{(1,0)}M}$ be the Chern connection on $T^{(1,0)}M$. For any $v \in \mathscr{C}^{\infty}(M, T^{(0,1)}M)$, we define $\nabla^{T^{(0,1)}M}v := \overline{\nabla^{T^{(1,0)}M}\overline{v}}$. Set $\widetilde{\nabla} = \nabla^{T^{(1,0)}M} \oplus \nabla^{T^{(0,1)}M}$. Then (M,ω) is a Kähler manifold if and only if $\nabla = \widetilde{\nabla}$, which means that the restriction of the Levi-Civita connection on $T^{(1,0)}M$ is just the Chern connection.

Proof. By defintion, the bundles $T^{(1,0)}M$ and $T^{(0,1)}M$ are preserved by $\widetilde{\nabla}$. If $\nabla = \widetilde{\nabla}$, from Theorem 1.2.13, we know that (M, ω) is a Kähler.

If (M, ω) is a Kähler, by Theorem 1.2.13, the bundles $T^{(1,0)}M$ and $T^{(0,1)}M$ are preserved by ∇ . Since $\nabla v = \overline{\nabla v}$, we only need to prove that the restriction of ∇ on $T^{(1,0)}M$ is holomorphic and Hermitian. Since ∇ is metric-preserving, we only need to prove that ∇ is holomorphic on $T^{(1,0)}M$.

Let V be a holomorphic vector field, $U \in \mathscr{C}^{\infty}(M, T^{(0,1)}M)$. Then $[U, V] \in \mathscr{C}^{\infty}(M, T^{(0,1)}M)$. In fact, for any holomorphic function f, V(f) is holomorphic. Since U(f) = 0 and U(V(f)) = 0, we have [U, V]f = 0.

Since $U \in \mathscr{C}^{\infty}(M, T^{(0,1)}M)$, it has a decomposition $U = X + \sqrt{-1}JX$. So

$$J[X + \sqrt{-1}JX, V] = -\sqrt{-1}[X + \sqrt{-1}JX, V]. \tag{1.2.40}$$

It is equivalent to

$$(J + \sqrt{-1})([X, V] + J[JX, V]) = 0. (1.2.41)$$

Thus $[X, V] + J[JX, V] \in T^{(0,1)}M$. On the other hand,

$$\nabla_{U}V = \nabla_{X}V + \sqrt{-1}\nabla_{JX}V = \nabla_{X}V + J\nabla_{JX}V$$

= $[X, V] + J[JX, V] - J(\nabla_{V}J)X = [X, V] + J[JX, V]. \quad (1.2.42)$

Since ∇ preserves $T^{(1,0)}M$, we have $[X,V]+J[JX,V]\in T^{(1,0)}M$. So

$$\nabla_U V = [X, V] + J[JX, V] = 0. \tag{1.2.43}$$

The proof of our proposition is completed.

Theorem 1.2.15 (Normal coordinates). A complex manifold M with triple (g, J, ω) is Kähler if and only if around each point of M, there exist holomorphic coordinates in which $g_{i\bar{j}}(z) = \delta_{ij} + O(|z|^2)$.

Proof. If $g_{i\bar{j}}(z) = \delta_{ij} + O(|z|^2)$, by (1.1.22),

$$d\omega = \sqrt{-1} \left(\frac{\partial g_{i\bar{j}}}{\partial x_k} dx^k + \frac{\partial g_{i\bar{j}}}{\partial y_k} dy^k \right) \wedge dz^i \wedge d\bar{z}^j = 0.$$
 (1.2.44)

Conversely, let (z^1, \dots, z^n) be a holomorphic frame such that $g_{i\bar{j}}(0) = \delta_{ij}$. Then $g_{i\bar{j}} = \delta_{ij} + a_{ijk}z^k + a_{ij\bar{k}}\bar{z}^k + O(|z|^2)$. Since $g_{i\bar{j}} = \overline{g_{j\bar{i}}}$, we have $a_{ij\bar{k}} = \overline{a_{jik}}$. Since

$$d\omega = \sqrt{-1}(a_{ijk}dz^k + a_{ij\bar{k}}d\bar{z}^k) \wedge dz^i \wedge d\bar{z}^j + O(|z|^2), \qquad (1.2.45)$$

The Kähler condition implies that $a_{ijk}dz^k \wedge dz^i \wedge d\bar{z}^j = 0$. It means that $a_{ijk} = a_{kji}$.

We choose a local frame frame $(\theta^1, \dots, \theta^n)$ by

$$z^i = \theta^i - \frac{1}{2} a_{kij} \theta^j \theta^k. \tag{1.2.46}$$

We claim that this frame is holomorphic. In fact, set $z = f(\theta)$. Then f is holomorphic. Observe that

$$0 = \frac{\partial (f^{-1} \circ f)}{\partial \bar{\theta}_j} = \frac{\partial f^{-1}}{\partial z_k} \frac{\partial f_k}{\partial \bar{\theta}_j} + \frac{\partial f^{-1}}{\partial \bar{z}_k} \frac{\partial \overline{f_k}}{\partial \bar{\theta}_j} = \frac{\partial f^{-1}}{\partial \bar{z}_k} \frac{\overline{\partial f_k}}{\partial \theta_j}. \tag{1.2.47}$$

Since $(\partial f_k/\partial \theta_j)$ is non-degenerate, we see that f^{-1} is holomorphic¹. For this coordinate change,

$$dz^i = d\theta^i - a_{kij}\theta^j d\theta^k. (1.2.48)$$

So in this new coordinates,

$$\omega = \sqrt{-1}(\delta_{ij} + a_{ijk}z^k + a_{ij\bar{k}}\bar{z}^k + O(|z|^2))dz^i \wedge d\bar{z}^j$$

$$= \sqrt{-1}(\delta_{ij} + a_{ijk}\theta^k + a_{ij\bar{k}}\bar{\theta}^k + O(|\theta|^2))(d\theta^i - a_{qil}\theta^l d\theta^q) \wedge (d\bar{\theta}^j - \overline{a_{pjs}}\bar{\theta}^s d\bar{\theta}^p)$$

$$= \sqrt{-1}(\delta_{ij} + O(|\theta|^2))d\theta^i \wedge d\bar{\theta}^j. \quad (1.2.49)$$

From (1.1.22), we have
$$g_{i\bar{j}}(\theta) = \delta_{ij} + O(|\theta|^2)$$

In general, the normal coordinates in Riemannian geometry is different from that in Kähler geometry.

¹This argument and the inverse function theorem for real function gives a proof of the following **inverse function theorem for holomorphic function**: Let $f: U \to V$ be a holomorphic map between two open subsets $U, V \subset \mathbb{C}^n$. If $z \in U$ is regular, i.e., the complex Jacobian $J(f)(z) = (\partial f_i/\partial z_j)$ is surjective, then there exist open subsets $z \in U' \subset U$ and $f(z) \in V' \subset V$ such that f induces a biholomorphic map $f: U' \to V'$.